

$H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$

with full LHC Run-2 data collected by the CMS detector

John Adams Villamoran, Cheng-Han Wu, Hao-Ren Jheng, Chia-Ming Kuo, and Saba Taj for the CMS Collaboration

Department of Physics & Center for High-Energy and High-Field Physics, National Central University, Chungli, Taiwan

Abstract

Rare decays of the Higgs, such as the loop-induced Dalitz process, $H \to \gamma * \gamma$, provide opportunities to test the Standard Model (SM) as well as multiple theories Beyond the Standard Model (BSM). The topic to be presented discusses the search for the $H \to \gamma * \gamma$, where an internal conversion of a virtual photon to two muons occurred. Data used in the analysis was collected by the CMS experiment at the LHC from proton-proton collisions with a center-of-mass energy of 13 TeV during the full Run-2 period, corresponding to an integrated luminosity of 137 fb⁻¹.

Introduction

Figure 1. Higgs Dalitz decay loop-induced Feynman diagrams.

Rare Higgs decays in the Standard Model open up a lot of possibilities to investigate physics Beyond the Standard Model (BSM). The Dalitz sector of Higgs decays, $H \to ll\gamma$, are rare decays dominated by loop-induced processes, such as the $H \to \gamma^* \gamma$. This process may possibly be enhanced in some BSM theories, which makes it sensitive to new physics^[1]. Furthermore, the non-triviality of its angular correlations may result in a nonzero measurement of the forward-backward asymmetry, manifested through CP violation in the H_{ll} effective coupling^[2].

Event Selection & Categorization

Two well-identified, isolated, and collimated muons originating from the primary vertex with $m_{\mu\mu} < 50$ GeV. Muons with $p_T^{\mu_1}>20$ GeV and $p_T^{\mu_2}>4$ GeV within the acceptance of the detector $|\eta| < 2.4$

Isolated and highly-energetic photons with $E_T^{\gamma} > 33$ GeV within ECAL acceptance region $|\eta_{SC}| < 2.5$ excluding the barrel-endcap transition region $1.4442 < |\eta_{SC}| < 1.566$

Kinematic cuts: $p_T^{\mu\mu(\gamma)}/m_{\mu\mu\gamma}>0$. 3 and $\Delta R(\mu,\gamma)>1$ to suppress the dominant Drell-Yan backgrounds

Each event is binned according to the dimuon mass, exploiting the higher predicted crosssection for smaller masses. Each dimuon mass bin is then categorized into the following:

Dijet- tagged 1	Dijet-tagged 2	Boosted- tagged	EB-HR9	EB-LR9	EE
jets passing the dijet lection with $n_{jj} > 500$ GeV	2 jets passing the dijet selection with $360 < m_{jj} < 500 \mathrm{GeV}$	Did not pass the dijet-tagged category with $p_T^{\mu\mu\gamma} > 60~{\rm GeV}$	Did not pass the tagged selections with photon in the EB region with $R_9 > 0.96$	Did not pass the tagged selections with photon in the EB region with $R_9 < 0.96$	Did not passi the tagged selections with photon in the EE region

dimuon invariant mass (top) and the ratio between the photon and dimuon p_T (bottom).

Figure 2. CMS detector cross-sectional view

with arrows illustrating the final state signature

of H $\rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$. Image taken from [3]

 $m_{\mu\mu\gamma}$ (GeV)

Signal & Background Modeling

Model the signal using events selected from dedicated signal samples simulating the $H \rightarrow \gamma * \gamma \rightarrow \mu \mu \gamma$. A maximum-likelihood fit to the three-body invariant mass was performed using a Double-Sided Crystal Ball Function. The resulting fit parameters are interpolated linearly to obtain the signal fits for the intermediate mass points.

The background is modeled using a data-driven approach. A maximum likelihood fit is performed on sideband region of the three-body invariant mass distribution of the data while blinding the signal region defined in the range 120 < $m_{\mu\mu\gamma} < 130$ GeV. The background fit function is chosen from a list of candidate family functions. An f-test was done to choose a *sufficient order* for each family of functions. An uncertainty due to the choice of the fit function is assigned through the envelope method.

Figure 4. (Top) Signal fit for a 125-GeV Higgs boson produced with gluon-gluon fusion in the EB-High R9 category for 2018. (Middle) Signal fit interpolation assuming different Higgs boson masses (120-130 GeV) for 2018 EB-High R9 category. (Bottom) Fit functions chosen by the f-test for 2018 data in the EB-High R9 category.

Results & Conclusion

Figure 5. (Left) Final background model with signal histogram (enhanced by a factor of 5 for visualization). (Right) Combined expected upper limits on σ/σ_{SM} for all years.

The derived expected upper limit on the ratio of the cross-section times branching with the Standard Model prediction (σ/σ_{SM}) for $H \to \gamma^* \gamma \to \gamma^* \gamma$ $\mu\mu\gamma$ at 95% confidence level is ~1.18. This level of sensitivity was achieved by exploiting the special signatures of the decay as well as the multiple categories implemented based on the dimuon invariant mass.

References

[1] M. Carena, I. Low, and C. E. M. Wagner, "Implications of a modified higgs to diphoton decay width", Journal of High Energy

Physics 2012 (Aug, 2012) 60,

[2] A. Y. Korchin and V. A. Kovalchuk, "Angular distribution and forward-backward asymmetry of the higgs-boson decay to photon and lepton pair", The European Physical Journal C 74 (Nov, 2014) 3141

[3] https://home.cern/science/experiments